Bischler-Napieralski Reaction of 2-(3, 4-Dimethoxy-2-nitrophenyl)N - [2-(3, 4-dimethoxyphenyl) ethyl]-N- [(S)-1-phenylethyl] acetamide Accompanied by Elimination of Chiral Auxiliary

Hong Min MA, Zhan Zhu LIU*, Shi Zhi CHEN
Institute of Materia Medica, Peking Union Medical College \& Chinese Academy of Medical Sciences, Beijing 100050

Abstract

Unexpected dealkylation of Bischler-Napieralski cyclization of 2-(3,4-dimethoxy-2-nitro-phenyl)-N-[2-(3,4-dimethoxyphenyl) ethyl]-N-[(S)-1-phenyl-ethyl] acetamide $\mathbf{3}$ was reported. The electronic effect of the substituent at 2-position of C ring was also discussed.

Keywords: Bischler-Napieralski reaction, elimination, (S)-1-phenylethylamine, 1-benzyltetrahydroisoquinolines.

Chiral 1-benzyltetrahydroisoquinoline alkaloids can be asymmetrically synthesized via Bischler-Napieralski (B-N) cyclization followed by stereoselective NaBH_{4} reduction (Polniaszek's method) of the N - (2-phenylethyl)-2-phenylacetamides bearing chiral auxiliary such as (S)-1-phenylethyl group on the nitrogen atom ${ }^{1-4}$. Recently Y. Ohishi and co-workers found an unusual B-N reaction on the carbon at 2-position of the A ring, which bears a bromine atom ${ }^{5,6}$. They indicated that the steric effect of the substituent group at the 2- or 5-position of A ring interfered with B-N reaction to give product accompanied by cleavage of the chiral auxiliary. These prompt us to present the result of our work in this field. We also observed similar unusual B-N reaction accompanying elimination of the chiral auxiliary from acetamide 3. At the same time we found that the electronic effect of the substituent at 2-position of C ring also interfered with $\mathrm{B}-\mathrm{N}$ reaction, except the steric effect of the substitute group of A ring.

Our entry into this field was as follows. We attempted to synthesize a natural (-)thalibealine, a novel tetrahydroprotoberberine-aporphine dimmer alkaloid, which could be prepared through improved Ullmann-type ether synthesis. The protoberberine monomer required in Ullmann reaction might be synthesized via chiral benzyltetrahydroisoquinoline 5 as a key intermediate. Based on the works of literatures ${ }^{1-4}$, it was rationally expected that the chiral auxiliary of $\mathbf{3}$ would result in 1,3-asymmetric induction through Polniaszek's method, then the chiral 1S-benzyltetrahydroisoquinoline

[^0]5 was obtained after eliminating the chiral auxiliary on the nitrogen atom.
The optical intermediate, 2-(3,4-dimethoxy-2-nitrophenyl)-N-[2-(3,4-dimethoxyphenyl) ethyl]-N-[(S)-1-phenylethyl] acetamide 3 was prepared from 3,4-dimethoxyphenylacetic acid as shown in Scheme 1. Treatment of 3,4-dimethoxy phenylacetic acid chloride with (S)-1-phenylethylamine afforded the optically active amide $\mathbf{1}$. Reduction of 1 with BH_{3}-THF complex in the presence of $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ complex gave the amine 2, which was condensed with 3,4-dimethoxy-2-nitrophenylacetic acid chloride to yield the acetamide 3. Treatment of the acetamide $\mathbf{3}$ with POCl_{3} in dry MeCN (B-N reaction conditions) afforded a viscous substance 4 . Without purification the intermediate 4 was treated with NaBH_{4} in MeOH at $-78^{\circ} \mathrm{C}$ to give a yellow solid (77.3%). The structure of the product was assigned as racemic 1-(3,4-dimethoxy-2-nitro-benzyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 5 on the basis of its ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and MS data ${ }^{7}$.

Scheme 1

a) $\mathrm{SOCl}_{2}, 50^{\circ} \mathrm{C}, 1 \mathrm{hrs}$; b) (S)-1-phenylethyl amine, $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}, 0{ }^{\circ} \mathrm{C}$; c) $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O} / \mathrm{BH}_{3}$-THF; d) 3,4-dimethoxy-2-nitrophenylacetic acid chloride, $5 \% \mathrm{NaOH}, 0{ }^{\circ} \mathrm{C}$; e) $\mathrm{POCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, 2.5 hrs; f) $\mathrm{NaBH}_{4}, \mathrm{MeOH},-78^{\circ} \mathrm{C}$.

The $\mathrm{B}-\mathrm{N}$ reaction intermediate was purified as usual to give 3, 4-dihydroisoquinoline 4, which was the only detectable product on thin layer chromatography. This proved that chiral auxiliary of the acetamide $\mathbf{3}$ was cleaved during the cyclization process. We also examined B-N reaction of the N-(2-phenylethyl)-2-phenylacetamides 6 bearing a chiral auxiliary on the nitrogen atom and found that B-N reaction of acetamide 6 having methoxy or hydrogen atom at 2-position of C ring afforded only the expected tetrahydroisoquinoline $\mathbf{8}$ in almost quantitative yield without the elimination of the chiral auxiliary ${ }^{3,4}$. Partial loss of the chiral auxiliary was reported when the acetamide 6 has a bromine atom at 2-position of C ring, compound 7 (57.0%) was obtained together with compound $\mathbf{8}(20.0 \%)^{6}($ Scheme 2). The acetamides without any substituent at the 2- or 5-position of A ring, gave different results because of the different substituent at 2-position of C ring. This suggested that the deterimining factor is the electronic effect of the substituent at 2-position of C ring.

In view of the reported and our results, a possible mechanism for the elimination of the chiral auxiliary can be postulated as shown in Scheme 3. The acetamide $\mathbf{3}$ would afford the intermediate iminium ion 9 upon treatment with POCl_{3}. The strong
electron-withdrawing nitro-group renders the hydrogen atoms of the methylene group much more acidic, which facilitates the loss of one molecule of HCl to give enamine $\mathbf{1 0}$.

Scheme 2

The hydrogen atom at the methyl of the chiral auxiliary was attacked by the ethylenic bond of $\mathbf{1 0}$ then the more stable 3, 4-dihydroisoquinoline $\mathbf{4}$ was yielded accompanying elimination of styrene via a 6-membered ring transition state. The reported experiment results in Scheme 2 can be explained with this mechanism reasonably. The hydrogen atoms of the benzyl CH_{2}-group were less acidic when there is no electron withdrawing group at 2-position of C ring so that the iminium ion formed from acetamide $\mathbf{6}$ was directly reduced with NaBH_{4} to afford compound $\mathbf{8}$ without the elimination of the chiral auxiliary. Because bromine atom is a weak electron withdrawing group, partial of the iminium ion was converted to the enamine during B-N reaction, so two products $\mathbf{7}$ and $\mathbf{8}$ were obtained after the reduction reaction.

In conclusion, it was clarified that 2-(3,4-dimethoxy-2-nitrophenyl)-N-[2-(3,4dimethoxyphenyl) ethyl]-N-[(S)-1-phenylethyl] acetamide $\mathbf{3}$ possessing a nitro group at 2-position of C ring afforded racemic 1-(3,4-dimethoxy-2-nitrobenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 5 by Polniaszek's method because of the elimination of the chiral auxiliary at B-N cyclization step prior to 1,3 -asymmetric reduction with NaBH_{4}. It can be concluded that the degree of the loss of chiral auxiliary during B-N reaction depends on the electron withdrawing ability of the substituent at 2-position of C ring.

Scheme 3

References and Notes

1. R. P. Polniaszek, J. A. Mckee, Tetrahedron Lett., 1987, 28 (39), 4511.
2. R. P. Polniaszek, C. R. Kaufman, J. Am. Chem. Soc., 1989, 111, 4859.
3. K. Komori, K. Takaba, J. Kunitomo, Heterocycles, 1996, 43 (8), 1681.
4. K. Takaba, K. Komori, J. Kunitomo, T. Ishida, Heterocycles, 1996, 43 (8), 1777.
5. K. Miyatani, M. Ohno, K. Tatsumi, et al., Heterocycles, 2001, 55 (3), 589.
6. N. Hashimoto, K. Miyatani, K. Ohkita, et al., Heterocycles, 2002, 57 (11), 2149.
7. Spectral data:

4: mp 161-163 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$) $2.66\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $3.72(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.92(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.94\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right), 6.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.91(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$. EI-MS $(\mathrm{m} / \mathrm{z}): 386.2(\mathrm{M})^{+}, 340.3$ (base), 309.2. 5: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) 2.73-3.22\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.37\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=9.6 \mathrm{~Hz}, \mathrm{~J}_{2}=4.2 \mathrm{~Hz}\right.$, CHN), $6.50(\mathrm{~s}, 1 \mathrm{H}$, Ar-H), $6.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125MHz, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 29.1,37.7,39.7,55.9,56.0,56.1,56.5$, $62.3,109.7,111.8,114.1,123.3,126.5,127.0,129.5,141.1,147.1,147.5,147.9,152.2$. FAB-MS (m / z): $389.0(\mathrm{M}+1)^{+}, 192.0$ (base).

Received 20 February, 2003

[^0]: *E-mail: liuzhanzhu@imm.ac.cn

